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ABSTRACT

Background: There is no available evidence comparing the predictive value of an artificial neural network (ANN)-based analysis 
method that integrates ambulatory blood pressure monitoring (ABPM) variables versus clinical risk stratification (CRS) for serious 
events in hypertensive patients at follow-up.  
Methods: We analyzed ABPM studies that included 27 measurements each one. The variables were daytime, nighttime and 24-hour 
mean, systolic and diastolic blood pressure, pulse pressure and heart rate; hypertensive load; standard deviations of pressures and 
heart rate; circadian rhythm. The dependent variable was the combined endpoint of death, stroke, acute myocardial infarction, 
heart failure and kidney disease. For clinical risk stratification, the Argentine Consensus on Hypertension was used as a model. We 
evaluated the discriminative ability to predict the endpoint using ANN-ABPM and CRS by logistic regression through the analysis of 
the area under the receiver operating characteristic curve (AUC-ROC). Both AUC-ROC were compared by De Long test. SPSS 23.0 
Statistics was used for statistical analyses and ANN modelling. 
Results: Data from 491 ABPM studies were analyzed.  Mean age was 69 ± 14 years;  53% of population was female; 11.6% had dia-
betes; 51% had dyslipidemia; mean body mass index was 26 ± 4 kg/m2; 14.3% were smokers. Median follow-up was 6.6 years (inter-
quartile range 4.5-8). The best predictive ANN model was the Multilayer Perceptron one with a hidden layer; neuronal architecture 
(27/7/2). Nocturnal systolic blood pressure (SBP) had 100% independent normalized importance for modelling. The  AUC-ROC for 
the combined endpoint was 0.81 (95% CI 0.77-0.90) using neural network analysis with ABPM variables, and 0.67 (95% CI 0.56-0.77) 
using CRS; De Long's test p < 0.001. 
Conclusion: We observed a higher discriminative ability to predict events at follow-up using ANN analysis with ABPM variables 
compared to conventional CRS. This observation raises a research hypothesis to be validated prospectively to optimize risk stratifica-
tion and treatment in hypertensive patients. 
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RESUMEN

Introducción: No hay evidencia disponible sobre la comparación del valor predictivo de eventos graves en el seguimiento de pacientes 
hipertensos mediante el análisis con redes neuronales artificiales (RNA) de las mediciones del monitoreo ambulatorio de presión 
arterial (MAPA) en comparación con la estratificación de riesgo clínica (EC).
Material y métodos: Se analizaron estudios de MAPA que incluyeron 27 mediciones cada uno: presión arterial media sistólica, 
diastólica, presión del pulso y frecuencia cardiaca de 24 hs, diurnas y nocturnas; carga hipertensiva; desvíos estándar de presiones 
y frecuencia cardíaca; ritmo circadiano. La variable dependiente fue el punto final combinado de muerte, accidente cerebrovascular, 
infarto agudo de miocardio, insuficiencia cardíaca e insuficiencia renal. Para la EC de cada paciente se utilizó como modelo el Con-
senso Argentino de Hipertensión Arterial. Se evaluó la capacidad discriminativa para predecir el punto final con RNA-MAPA y con 
EC por análisis de regresión logística a través del análisis del área bajo la curva ROC (ABCR). Se compararon ambas ABCR mediante 
test de De Long. Para los análisis estadísticos y el modelaje de las RNA se usó el programa SPSS 23.0 Statistics.
Resultados: Se analizó la información de 491 estudios de MAPA; edad media: 69 ± 14 años, 53 % mujeres, 11,6 % diabéticos, 51% 
dislipidémicos, media de índice de masa corporal 26 ± 4 kg/m2, 14,3 % fumadores. La mediana del seguimiento fue 6,6 años (rango 
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INTRODUCTION
Cardiovascular diseases remain the leading cause of 
morbidity and mortality worldwide. Prediction of car-
diovascular (CV) events is essential for early identi-
fication of individuals at risk and implementation of 
more appropriate preventive interventions. (1,2)

Therefore, it is recommended that all hypertensive 
patients be assessed to determine their overall cardio-
vascular risk (CVR) in order to define therapeutic and 
cardiovascular risk factor control measures. The in-
formation from medical history, physical examination, 
office blood pressure (BP) measurements and the re-
sults of recommended complementary studies will de-
termine the presence of associated risk factors, target 
organ damage, and history of cardiovascular events. 
With this data it is possible to stratify the overall CVR 
of hypertensive patients and classify their risk as low, 
moderate, high and very high. Knowledge of an indi-
vidual patient’s overall CVR stratification provides 
important predictive information, a global approach 
to prevention and the appropriate drug therapy. (3,4)

A series of formulas or risk scores have been pro-
posed to calculate CVR. The calculators arising from 
them are a heterogeneous group with various limita-
tions (qualitative variables, complementary studies 
that are not used in daily clinical practice). Many of 
them have not been validated in our population. (3-5)

The Argentine Consensus on Arterial Hyperten-
sion proposes an approach similar to that used by the 
European Society of Hypertension and adapted to our 
setting. (5)

Although office blood pressure measurement is 
currently the recommended diagnostic method, it is 
not free of significant variability and bias due to the 
inaccuracy of the measurement technique. Thus, sev-
eral national and international guidelines recommend 
the use of out-of-office measurements by means of am-
bulatory blood pressure monitoring (ABPM) to con-
firm the diagnosis of hypertension (HT) and provide 
more accurate predictive information. (5-7)

In recent years, ABPM has become a useful ad-
junctive study for the diagnosis and prognostic assess-
ment of CV events in hypertensive patients compared 
to isolated office measurements. In addition, ABPM 
can provide additional data, such as blood pressure 
variability, blood pressure dipping patterns, and mean 
blood pressure values at different periods of the day. 
(8-10)

Although the accuracy of cardiovascular risk pre-
diction models has improved over the years, some un-
certainty still remains in the estimates. At present, 
the hemodynamic variables provided by the ABPM 
are not considered for cardiovascular risk stratifica-
tion in hypertensive patients. (11,12)

In this regard, it is important to highlight the need 
for more accurate predictive tools that incorporate 
the different blood pressure variables derived from 
ABPM.

One of the most widely used methodological tools 
for predictive analysis in different areas of medicine, 
currently in full development, is artificial neural net-
work (ANN).  Analysis with ANN as an artificial intel-
ligence (AI) model has shown to be superior in terms 
of prognostic accuracy (especially in the presence of 
non-linear associations) to the statistical tools we usu-
ally use, such as multivariate analysis and logistic re-
gression. (13-15)

ANNs can recognize relevant features in the data 
and adjust their synaptic weights and connections to 
improve their predictive performance, which depends 
on the number of input variables and their training. 
This allows ANN to make more accurate predictions. 
(16-18)

The application of different machine learning mod-
els has been aimed at early detection and screening to 
identify those who will develop hypertension. (19-22)

The ANN-based analysis model which integrates 
ABPM variables could improve the predictive ability 
and provide information to design a more accurate 
and complete stratification of CVR compared to the 
existing models.

This study aimed to evaluate the ability to predict 
serious events in hypertensive patients at follow-up 
using an ANN-based analysis model which integrates 
ABPM variables compared to conventional clinical 
risk stratification (CRS).

METHODS
A database with measurements from ABPM studies was 
analyzed according to the following inclusion criteria: adult 
patients (over 18 years of age), with a diagnosis of essential 
arterial hypertension under drug therapy, who underwent 
ABPM studies to evaluate treatment efficacy. They were re-
quired to have complete follow-up through electronic medi-
cal records and clinical visits to a community hospital.

Consecutive ABPM studies performed between Septem-
ber 2013 and April 2020 with complete clinical follow-up 

intercuartílico 4,5-8). El modelo de RNA con mejor capacidad predictiva fue el Perceptrón Multicapa con una capa oculta; arquitec-
tura neuronal (27/7/2). La presión arterial sistólica nocturna presentó una importancia normalizada independiente del 100 % para 
la determinación del modelo. El ABCR para la discriminación del punto final fue, con el análisis con RNA del MAPA, 0,81 (IC 95% 
0,77-0,90); con la estratificación de riesgo clínico fue de 0,67 (IC 95% 0,56-0,77); test de De Long p < 0,001.
Conclusión: Observamos una mayor capacidad discriminativa en la predicción de eventos mediante el análisis con RNA de las varia-
bles del MAPA vs. la estratificación de riesgo clínico, lo cual constituye una hipótesis de investigación a validar prospectivamente..

Palabras claves: Estratificación del riesgo - Redes neuronales artificiales - Hipertensión
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cal Association, (23) every precaution was taken to protect 
the privacy and confidentiality of all personal information.
 
RESULTS
We analyzed data from 491 ABPM studies that in-
cluded 27 numerical variables from each study: means 
of 24-hour systolic blood pressure (24-h mSBP), 24-
hour diastolic blood pressure (24-h mDBP), 24-hour 
mean blood pressure (24-h mMBP), 24-hour pulse 
pressure (24-h mPP), 24-hour heart rate (24-h mHR), 
daytime systolic blood pressure (day mSBP), daytime 
diastolic blood pressure (day mDBP), daytime mean 
blood pressure (day mMBP), daytime pulse pressure 
(day mPP), daytime heart rate (day mHR), night-
time systolic blood pressure (night mSBP), nighttime 
diastolic blood pressure (night mDBP), nighttime 
mean blood pressure (night mMBP), nighttime pulse 
pressure (night mPP), nighttime heart rate (night 
mHR); variability of 24-hour systolic blood pressure 
(24-h SBPsd), 24-hour diastolic blood pressure (24-h 
DBPsd), 24-hour pulse pressure (24-h PPsd), 24-hour 
mean blood pressure (24-h MBPsd), 24-hour heart 
rate (24-h HRsd); daytime SBP load (day SBPL), day-
time DBP load (day DBPL), nighttime SBP load (night 
SBPL), nighttime DBP load (night DBPL); daytime 
blood pressure ≥135/85 mmHg (day HT), nighttime 
blood pressure ≥120/70 mmHg (night HT), circadian 
rhythm with nocturnal SBP and/or DBP fall <10% 
(non-dipping pattern).

Table 1 details the mean values of each variable 
from the ABPM studies used for ANN modelling for 
the combined endpoint. 

The mean age of the population was 64 ± 14 years, 
47% were women, 12% had diabetes, 11% were active 
smokers, 52% had dyslipidemia and the mean body 
mass index was 26 ± 4 kg/m2.

The median patient follow-up was 6.6 years (IQR 
4.5-8). The endpoint incidence at follow-up was 2.6%. 
Table 2 details the best ANN models with their neu-
ronal activation functions of the hidden and output 
layers and their AUC-ROC. 

The best performing models were the Multilayer 
Perceptron of a hidden layer (activation function of 
the hidden layer neurons of hyperbolic tangent type) 
and those of the output layer of softmax type with a 
neural architecture (27/7/2) describing the nodes of 
each of the layers (Figure 1). Table 3 describes the 
synaptic weights with which the neural network is 
constructed and trained to predict the endpoint. The 
hyperbolic tangent function was used as the activa-
tion function for the input layer and the softmax for 
the hidden layer. The sample was split with a segmen-
tation of 70% training group and 30% validation of 
the algorithms. The estimated synaptic weights were 
considered for the development and testing of a mul-
tilayer perceptron model for the combined endpoint 
based on the input of the 27 variables from the ABPM 
studies.

The AUC-ROC of the analysis of ABPM variables 
using neural networks was 0.81 (95% CI 0.77-0.90) 
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until November 2022 were included. Data from the ABPM 
study reports (the averages of each of the variables were 
considered) were transferred to a spreadsheet and processed 
using Visual Basic and SQL softwares.

Cardiovascular risk stratification was performed using 
the variables proposed by the Argentine Consensus on Arte-
rial Hypertension (Argentine Society of Cardiology, Argen-
tine Society of Arterial Hypertension, Argentine Federation 
of Cardiology) as a model. (5)

The variables considered were the following: a) Risk fac-
tors: age, gender, history of dyslipidemia, diabetes, smoking, 
obesity; b) Target organ damage: diagnosis of left ventricu-
lar hypertrophy (LVH) confirmed by echocardiogram, chron-
ic renal failure (stages 1 and 2); c) Associated clinical condi-
tions or history of cardiovascular events: acute myocardial 
infarction (AMI), heart failure (HF), stroke and/or transient 
ischemic attack (stroke/TIA), coronary artery disease, myo-
cardial revascularization, chronic kidney disease (stages 3, 
4 and 5). 

Low risk was defined as patients with one associated risk 
factor; moderate risk: patients with two associated risk fac-
tors; high risk: patients with three or more associated risk 
factors and/or diabetes and/or target organ damage; very 
high risk: patients with history of cardiovascular events or 
associated clinical conditions. (4,5)

A combined endpoint of serious events (SE) was de-
fined as the occurrence of death and/or non-fatal AMI and/
or stroke and/or TIA and/or HF and/or chronic renal failure 
validated in the electronic medical record by specialists in 
Internal Medicine and Cardiology according to current na-
tional and international guidelines. (3-5)

Neural network algorithm models were developed in-
cluding the ABPM variables as independent cofactors for 
input to the ANN, and SE as the dependent event (output 
layer). An NN algorithm is a special type of non-linear re-
gression that has multiple local minimum values. Therefore, 
every time the training algorithm runs, it will converge in a 
different model. To choose the best model, the training pro-
cess was repeated 50 times. Only models showing the best 
discriminative power by logistic regression or ANN were se-
lected for comparison.

SPSS 26.0 Statistics was used for statistical analysis and 
ANN modelling. Different models, architecture and activa-
tion functions were compared to select the one with the best 
performance in terms of discrimination to predict the end-
point. 

Categorical variables were expressed as percentages 
with 95% CI and continuous variables were expressed as 
means and their respective standard deviation or median 
and interquartile range (IQR) according to their distribution 
(parametric or non-parametric).  

The discriminative ability of ABPM vs. CRS to predict 
SE was assessed with the area under the receiver operating 
characteristic curve (AUC-ROC) analysis.  For the compari-
son of the AUC-ROC, the De Long test was used with the 
MEDCALC program,  version 23.0.9.

In order to identify the variables with the greatest weight 
and usefulness in the development of the ANN, a sensitivity 
analysis was performed to determine their  normalized im-
portance in the model.

Ethical considerations     
The study was reviewed and approved by the institutional 
and independent Ethics Committee. Due to the observation-
al nature of this analysis, informed consent was not required. 
According to the Declaration of Helsinki of the World Medi-
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mean systolic blood pressure (night mSBP) with a val-
ue of 100%, followed by 24-hour mean systolic blood 
pressure (24-h mSBP), BMI, mean of 24-hour mean 
blood pressure (24-h mMBP), nighttime mean blood 
pressure (night mMBP) and 24-hour mean pulse pres-
sure (24-h mPP) (Figure 3).

DISCUSSION
To our knowledge, this analysis is the first to re-
port the predictive ability of the analysis of variables 
from ABPM studies using ANN and their superiority 
compared to clinical risk stratification for long-term 
events in hypertensive patients.

The importance of stratifying hypertensive pa-
tients according to their estimated risk of a cardiovas-
cular events allows treatment to be adapted to this 
risk rather than to  the office BP levels alone. Among 
the most widely used risk scales are the Framingham 
equation, the SCORE (Systematic Coronary Risk 
Evaluation) system, the QRISK, calculators from dif-
ferent United States medical societies and from the 
World Health Organization, the latter adapted to dif-
ferent geographical areas. In our country, the stratifi-
cation recommended by the Argentine Consensus on 
Arterial Hypertension is applied. (3-5)

However, the scores have several limitations that 
may affect their accuracy and applicability, such as 
differences between populations according to geo-
graphic regions, environmental and socioeconomic 
characteristics, underestimation of the risk in young 
patients, qualitative difference in risk factors in many 
cases, and failure to identify patients with a diagnosis 
of masked hypertension. Most scores do not consider 
antihypertensive treatment to reduce o predict risk in 
the short term. (15,16)

In contrast to the conventional multivariate analy-
sis methods, the trained ANN algorithm is presented 
as a powerful tool to predict events, as it includes all 
the variables available in the ABPM studies which 
avoids bias in the selection of variables. 

Multi-layer Perceptron neural networks are among 
the most powerful and popular network architectures. 
They consist of an input layer, an arbitrary number of 
hidden layers, and an output layer. Each of the hidden 
or output neurons receives an input from neurons in 
the previous layer (backward connections), but there 
are no lateral connections between neurons within 
each layer. The input layer contains as many neurons 
as categories corresponding to the independent vari-
ables (categorical and continuous). The output layer 
corresponds to the response variable, which in this 
case is a categorical variable (combined endpoint).

Radial basis neural networks are those whose ac-
tivation functions at the hidden nodes are radially 
symmetric. A function is said to be radially symmetric 
if its output depends on the distance between a vec-
tor that stores the input data and a vector of synaptic 
weights, which is called the center or centroid. (17-20)

Previous studies using machine learning have 

24-h DBPsd: 24-hour diastolic blood pressure variability; 24-h HRsd: 24-
hour heart rate variability; 24-h mMBP: mean of 24-hour mean blood 
pressure; 24-h MBPsd: 24-hour mean blood pressure variability; 24-h 
mDBP: 24-hour mean diastolic blood pressure; 24-h mHR: 24-hour mean 
heart rate; 24-h mPP: 24-hour mean pulse pressure; 24-h mSBP: 24-hour 
mean systolic blood pressure; 24-h PPsd: 24-hour pulse pressure vari-
ability; 24-h SBPsd: 24-hour systolic blood pressure variability; ABPM: 
ambulatory blood pressure monitoring; day DBPL: daytime DBP load; 
day HT: daytime blood pressure ≥135/85 mmHg; day mDBP: daytime 
mean diastolic blood pressure; day mHR: daytime mean heart rate; 
day mMBP: mean of daytime mean blood pressure: day mPP: daytime 
mean pulse pressure; day mSBP: daytime mean systolic blood pressure; 
day SBPL: daytime SBP load; night DBPL: nighttime DBP load; night HT: 
nighttime blood pressure ≥120/70 mmHg; night mDBP:  nighttime mean 
diastolic blood pressure; night mHR: nighttime mean heart rate; night 
mMBP: mean of nighttime mean blood pressure: night mPP: nighttime 
mean pulse pressure; night mSBP: nighttime mean systolic blood pres-
sure; night SBPL: nighttime SBP load; non-dipping: circadian rhythm 
with nocturnal SBP and/or DBP fall <10%. 

Table 1. Description of the mean values of the ABPM variables

24-h mSBP

24-h mDBP

24-h mMBP

24-h mHR

24-h mPP

24-h SBPsd

24-h DBPsd

24-h PPsd

24-h MBPsd

24-h HRsd

day mSBP

day  mDBP

day mMBP

day mHR

day mPP

night mSBP

night mDBP

night mPP

night mMBP

night mHR

day SBPL

day DBPL

night SBPL

night DBPL

night HT

day HT

Non-dipping

126.16 ± 11.65 mmHg

79.22 ± 9.30 mmHg

94.87 ± 9.4 mmHg

75.21 ± 8.5 bpm

46.93 ± 7.62 mmHg

17.92 ± 5.6 mmHg

14.52 ± 4.2 mmHg

16.9 ± 6.1 mmHg

13.51 ± 3.8 mmHg

11.59 ± 3.1 bpm

130.13 ± 12.2 mmHg

82.35 ± 9.9 mmHg

98.17 ± 10.14 mmHg

78.85 ± 9.1 bpm

47.77 ± 8.08 mmHg

117.34 ± 13.47 mmHg

72.23 ± 9.90 mmHg

48.10 ± 8.99 mmHg

87.27 ± 10.50 mmHg

67.47 ± 9.2 bpm

34.86%

42.25%

39.47%

49.68%

58.4% (95% CI 55-72)

43.9% (95% CI 40-56)

42.6% (95% CI 39-55)

Value ABPM variables

compared to clinical risk stratification, 0.67 (95% CI 
0.56-0.77), for the combined endpoint; De Long's test 
p < 0.001 (Figure 2).

The variables with the greatest weight and useful-
ness in the development of the neural network or nor-
malized importances in this model were: nighttime 
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studied its usefulness as a method to screen and early 
detect hypertension in different populations around 
the world, while other research groups have used it to 
predict events in hypertensive patients. (21, 22, 24-26)

Other authors have reported the usefulness of 
learning machines to optimize decision making in 
order to improve the treatment of hypertensive pa-
tients based on clinical data, and to achieve high ac-
curacy when predicting the individual probability of 
achieving office blood pressure targets with different 
treatments. The AUC-ROC were very close to 0.90, 
indicating high prediction accuracy, and the Kappa 
coefficients were close to 0.8, showing high levels of 
agreement between observed and predicted target 
outcomes. (27,28)

The AUC-ROC shows that the ANNs detect non-
linear relationships between independent and de-
pendent variables beyond the scope of logistic regres-
sion. These results support the usefulness of the ANN 
as a method of analysis in the prediction of serious 
events in hypertensive patients. (24,27)

ANN-based prediction models prove to be robust 
and reliable and could be implemented in clinical 
practice as decision support tools. This method would 
early identify those hypertensive patients at higher 
risk of developing serious events and would allow 
more effective preventive interventions. (22, 24-26)

We highlight that nighttime mean systolic blood 
pressure (night mSBP) presented an independent 
normalized significance for the determination of the 
model. Nocturnal blood pressure has been shown to 
be an independent risk variable in the prediction of 
cardiovascular events in hypertensive patients, asso-
ciated with a higher incidence of stroke, myocardial 
infarction, heart failure and renal failure. (29) 

During nighttime hours, blood pressure follows a 
characteristic circadian pattern, with a physiological 
decrease. In hypertensive patients, this decrease may 
be insufficient or even reversed, known as non-dipping 

or reverse dipping pattern. These abnormal nocturnal 
blood pressure patterns have been associated with in-
creased cardiovascular risk and events.  (29-31)

Different publications have described that in-
creased nighttime mSBP is associated with higher 
risk of cardiovascular events in hypertensive patients, 
even after adjusting for other known risk factors. (30-
38)

Considering previous observations and the results 
of this study using the ANN analysis, nighttime mSBP 
could be considered a useful marker for cardiovascu-
lar risk stratification in hypertensive patients. Its 
evaluation would help to identify patients at higher 
risk of complications and would allow their reduction 
by clinical interventions.

The effective implementation of the current neu-
ral network models can be done using software or 
hardware systems. Thus, the synaptic weights of the 
proposed architectures can be trained and calculated 
through a Python algorithm. In turn, this algorithm 
should be able to automatically read data sets from 
electronic study records.

The present study shows that the analysis of 
ABPM variables using ANNs has a significant predic-
tive value of serious events in hypertensive patients. 
This suggests the importance of considering ABPM 
variables for risk stratification in hypertensive pa-
tients and shows that the ANNs are an effective tool 
for the predictive analysis of cardiovascular events 
with adequate accuracy.

Limitations
Although several clinical and ABPM variables were 
used, the inclusion of other measurements, such as 
microalbuminuria or peripheral vascular disease, may 
provide additional information to improve the predic-
tive capacity. Risk stratification was performed using 
all data available in the electronic medical record. 

In our opinion, the retrospective nature of the 

Table 2. Neural network models with best performance (multilayer perceptron with one hidden layer, two hidden layers and with 
radial basis model) with their neural activation functions of the hidden layer and the output layer, the neural architecture, and 
their area under the ROC curve.

Hidden layer activation 
function

Output layer activation 
function

Neural architecture Area under the ROC curveModel

Multilayer perceptron with 

a hidden layer

Multilayer perceptron with 

two hidden layers

Radial basis

De Long’s test

p-value

Hyperbolic tangent

Hyperbolic tangent

Softmax

Multilayer perceptron 

1 hidden layer vs. 

2 hidden layers

0.040

Softmax

Softmax

Identity

Multilayer perceptron 

1 hidden layer vs. 

radial basis

0.002

27/7/2

27/20/15/2

27/6/2

0.81 (95% CI 0.77-0.90)

0.75 (95% CI 0.68-0.80)

0.68 (95% CI 0.61-0.70)

Radial basis vs. multilayer 

perceptron 2 hidden layers

0.001

95% CI: 95% confidence interval
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analysis is a limitation due to the associated biases 
that affect the quality of the evidence.  The single-
center nature of this study limits the transfer of our 
results to the real world.

A larger sample size with a prospective analysis, 
external validations in different cohorts of hyperten-
sive patients and the participation of various health-
care centers would optimize the robustness of this 
study hypothesis. 

Neural network algorithms have been criticized on 
several occasions for being "black boxes" with limited 
ability to identify possible causal relationships. In the 
present study we identify the most influential factors 
in the algorithm modelling using standardized impor-
tance values.

The performance quality of learning machines and 
their algorithms is associated with a larger proportion 
of events and a higher volume of cases in the total 
population compared to this study. It should be noted 
that the incidence of events registered in our work is 
consistent with that reported in the literature for the 
outpatient hypertensive population. (39-41)

  
CONCLUSIONS     
The novelty of this study is that it was the first to pub-
lish the use of ANNs integrating the ABPM variables 
to predict long-term events compared to currently rec-
ommended cardiovascular risk stratification. 

Of additional interest, we observed that nighttime 
mean SBP was the variable with the greatest weight 
in the performance of the ANN.

In our view, this analysis is a generator of a re-
search hypothesis to be evaluated in future multi-
center studies using adequate power and real-world 
representativeness to transfer its results.

These algorithms can  be integrated into the re-
sults of each ABPM study to automatically calculate 
the probability of risk of serious events in hyperten-
sive patients at follow-up, thus supporting physician’s 
decision making. 
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mDBP: 24-hour mean diastolic blood pressure; 24-h mHR: 24-hour mean 
heart rate; 24-h mPP:  24-hour mean pulse pressure; 24-h mSBP: 24-hour 
mean systolic blood pressure; 24-h PPsd: 24-hour pulse pressure variabil-
ity; 24-h SBPsd: 24-hour systolic blood pressure variability; day  mDBP: 
daytime mean diastolic blood pressure; day DBPL: daytime DBP load;
day mHR: daytime mean heart rate; day HT: daytime blood pressure 
≥135/85; day mMBP:  mean of daytime mean blood pressure; day mPP:  
daytime mean pulse pressure; day mSBP: daytime mean systolic blood 
pressure; day SBPL: daytime SBP load; night DBPL: nighttime DBP load;
night HT: nighttime blood pressure ≥120/70; night mDBP: nighttime 
mean diastolic blood pressure; night mHR: nighttime mean heart rate;  
night mMBP:  mean of nighttime mean blood pressure; night mPP:  
nighttime mean pulse pressure; night mSBP: nighttime mean systolic 
blood pressure; night SBPL: nighttime SBP load; Non-dipping: circadian 
rhythm with nocturnal SBP and/or DBP <10%; SE: serious event

Fig. 1. Architecture of the multilayer perceptron type neural 
network with a hidden layer with 27 neurons in the input layer, 
7 neurons in the hidden layer and 2 neurons in the output layer.
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24-h DBPsd: 24-hour diastolic blood pressure variability; 24-h HRsd: 24-hour heart rate variability; 24-h mMBP: mean of  24-hour mean blood pres-
sure; 24-h MBPsd: 24-hour mean blood pressure variability; 24-h mDBP: 24-hour mean diastolic blood pressure; 24-h mHR: 24-hour mean heart rate; 
24-h mPP: 24-hour mean pulse pressure; 24-h mSBP: 24-hour mean systolic blood pressure; 24-h PPsd: 24-hour pulse pressure variability; 24-h SBPsd: 
24-hour systolic blood pressure variability; day DBPL: daytime DBP load; day HT: daytime blood pressure ≥135/85 mmHg; day mMBP: mean of day-
time mean blood pressure; day mDBP: daytime mean diastolic blood pressure; day mHR: daytime mean heart rate; day mPP: daytime mean pulse 
pressure; day mSBP: daytime mean systolic blood pressure; day SBPL: daytime SBP load; night DBPL: nighttime DBP load; night HT: nighttime blood 
pressure ≥120/70 mmHg; night mMBP: mean of nighttime mean blood pressure; night mDBP: nighttime mean diastolic blood pressure; night mHR: 
nighttime mean heart rate; night mPP: nighttime mean pulse pressure; night mSBP: nighttime mean systolic blood pressure; night SBPL: nighttime 
SBP load; non-dipping: circadian rhythm with nocturnal SBP and/or DBP fall <10%.

Table 3. N Description of the synaptic weights with which the neural network is constructed and trained to predict the endpoint.

Input 

layer

Hidden 

layer  1

(Bias)

non-dipping 0

non-dipping 1

night HT 0
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(Bias)

O (1:1)

O (1:2)

O (1:3)

O (1:4)

O (1:5)

O (1:6)

O (1:7)
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0.560
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0.046
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0.459
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0.486

-0.361
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-0.266
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-0.165
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0.435
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-0.240

-0.381

-0.290

-0.445

0.480

-0.107

-0.401

0.345

0.373
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0.331
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-0.280

0.435

-0.294

0.233

-0.062
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0.170
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0.332
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0.228
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0.126
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0.424
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0.265
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0.276

-1.302

-0.348

-0.230

0.121

0.158

-0.031

0.589
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1.206

0.844

0.008

-0.058

-0.023

0.045

-0.891

0.691

-0.093

0.712

0.005

-0.129

-0.129

-0.504
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-0.168
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0.134

-0.190

-0.055

0.100

-0.108

-0.275

-0.452

-0.166

-0.080
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-0.346

0.037

0.178
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0.233

-0.398

0.307

0.294

0.010

0.222

0.488

0.474

-0.077

0.278

-0.124

0.253

-0.343

-0.294

-0.134

-0.125

-0.501

-0.293

-0.073

0.251

-0.299

0.368

0.315

-0.167

-0.323

0.019
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0.319

0.050

0.133

0.268

0.141

0.291

0.391
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0.318

0.179
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-0.281
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0.511

0.278
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0.697
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-0.123

Predicted
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24-h DBPsd: 24-hour diastolic blood pressure variability; 24-h MBPsd: 24-hour mean blood pressure variability; 24-h mSBP: 24-hour mean systolic 
blood pressure; 24-h PPsd: 24-hour pulse pressure variability; 24-h SBPsd: 24-hour systolic blood pressure variability; BMI: body mass index; day 
mMBP: mean of daytime mean blood pressure; day mSBP: daytime mean systolic blood pressure; night DBPL: nighttime DBP load; night HT: night-
time blood pressure ≥120/70 mmHg; night mMBP: mean of nighttime mean blood pressure; night mHR: nighttime mean heart rate; night mPP: 
nighttime mean pulse pressure; night mSBP: nighttime mean systolic blood pressure; night SBPL: nighttime SBP load; Non-dipping: circadian rhythm 
with nocturnal SBP and/or DBP <10%.

Fig. 3. Bar graph representing the variables with the highest normalized importance for the development of the artificial neural 
network in this model 

Fig. 2. Comparison of the 
areas under the ROC curve; 
ABPM variables analyzed 
with artificial neural net-
works: 0.81 (95% CI 0.77-
0.90) versus clinical risk 
stratification: 0.67 (95% CI 
0.56-0.77); De Long's test p 
< 0.001
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